Organic Chemistry

Chemo- and regioselective nitration of geranylacetone by NaNO₂/AcOH. Synthesis of 6,10-dimethyl-9-methyleneundec-5E-en-2-one

A. V. Stepanov and V. V. Veselovsky*

N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 117913 Moscow, Russian Federation. Fax: + 7 (095) 135 5328. E-mail: ves@cacr.ioc.ac.ru

Treatment of geranylacetone with $NaNO_2$ in AcOH affords 6,10-dimethyl-9-nitroundeca-5E,10-dien-2-one as the major product. This product was used to synthesize 6,10-dimethyl-9-methyleneundec-5E-en-2-one, a component of the essential oil from the roots of the Saussurea lappa plant.

Key words: linear isoprenoid, geranylacetone, nitration, nitro derivative. Nef reaction, 6,10-dimethyl-9-methyleneundec-5*E*-en-2-one, essential oil component.

The range of methods for selective functionalization of an isopropylidene fragment in linear isoprenoids is currently limited to a few examples (e.g., see Ref. 1 and references therein). Meanwhile, derivatives of this type are promising synthetic blocks for building molecules of natural compounds of the terpene series. The smooth formation of nitro derivative 2a (Scheme 1) as an intermediate, found by Corey et al. in a study of the mechanism of degradation of the isopropylidene group in geranyl acetate 1a into an ethynylidene group on treatment with NaNO₂ in AcOH, presents interest from this viewpoint.

We found that this transformation is chemoselective for a fairly representative series of isoprenoid substrates 1b-g³⁻⁶; moreover, some of the nitro derivatives 2 proved to be convenient starting compounds for efficient synthesis of natural cyclopentanoids of the iridane series.^{5,6} This communication presents a study of this approach in relation to commercially available geranylacetone (3), carried out in order to find new synthetic applications of the transformation in question (Scheme 2).

Reagents and conditions: i. NaNO₂/AcOH/Et₂O, 5 °C.

10

ii. HSCH₂CH₂SH/p-TsOH/AcOH, 25 °C.

iii. TiCl₃/NH₄OAc/MeOH, 25 °C.

iv. $Na_2S_2O_4/n$ - $Bu_4N^+Br^-/NaHCO_3/PhH/H_2O_7$, 80 °C.

v. PhyPCH3Br/n-BuLi/THF, 68 °C.

vi. AgNO3/NCS/MeCN, 10 °C.

11

The introduction of a nitro group into dienone 3 on treatment with NaNO₂ in AcOH was found to be less selective. In addition to the major product 4, the reaction yields up to 20% of nitro compound 5 due to the involvement of the Δ^5 -trisubstituted double bond of the starting diene 3. The ratio of the components in this mixture was established by ¹H NMR spectroscopy (characteristic signals of compound 5: δ 5.57 (m. 1 H. HC(9))

and δ 4.94 (m, 1 H, HC(5))) and by its separation by preparative HPLC.

The nitro derivative 4 thus obtained may be of interest as a starting compound for the synthesis of natural isoprenoids. As an illustration, we performed its five-step transformation into 6,10-dimethyl-9-methylene-undec-5*E*-en-2-one (11), a component of the essential oil from the roots of *Saussurea lappa*⁷ (see Scheme 2).

In order to attain subsequent differentiation of functions, before transformation of the allylic nitro group into an enone group, ketone 4 had been protected by being transformed into dithiolane 6. Treatment of the latter compound with $TiCl_3$ with pH control (cf. Ref. 8) afforded enone 7 in ~60% yield. It is noteworthy that compound 6 proved to be inert under other conditions used in the Nef reaction. Thus when dithiolane 6 is treated with $Pr^nONO/NaNO_2$ in DMSO (cf. Ref. 9), an aqueous solution of $TiCl_3$, 10 or cerium ammonium nitrate, 11 only the unreacted starting compound can be isolated from the reaction mixture.

Conjugate reduction of enone 7 by Na₂S₂O₄ (cf. Ref. 12) smoothly gave saturated ketone 9. This product was methylenated under standard conditions and the dithiolane derivative 10 thus obtained was converted into the target ketone 11 by removing this protection at the final step.

Another attractive route for obtaining ketone 9 from nitro compound 6 could consist of direct transformation of the regioisomeric vinyl derivative 8 into the saturated ketone, as is known for related systems. However, attempts to conjugate the multiple bond in allylic nitro derivative 6 by a catalytic amount of Et₃N in CHCl₃ or by excess Et₃N followed by treatment with AcOH (0 °C) (Ref. 14) did not give the desired isomerization product 8, apparently, due to the unfavorable thermodynamics of this process, associated with the formation of a tetrasubstituted double bond.

The structures of newly obtained compounds 4, 6, 7, 9, and 10 were based on spectroscopic and elemental analysis; the spectral characteristics of natural ketone 11 synthesized in this way were virtually identical to those given in the literature.^{7,15}

Experimental

IR spectra (v/cm⁻¹) were recorded on a Specord M-80 instrument. ¹H NMR (δ) and ¹³C NMR (δ) spectra for solutions in CDCl₃ were run on a Bruker AC-200 spectrometer (200.13 MHz and 50.32 MHz, respectively). ¹H and ¹³C NMR chemical shifts were referred to the solvent signal (7.27 for ¹H and 77.0 for ¹³C). Mass spectra (EI) were measured on a Varian MAT 311A instrument at 70 eV. The presented R_f values refer to a fixed SiO₂ layer (Silufol). HPLC was performed on a column with Silasorb 600 (10 µm, 250×24 mm), using a 95 : 5 heptane—AcOEt mixture, 7 mL min⁻¹, as the eluent and a refractometric detector. Commercially available (Fluka) Me(Ph)₃P+Br⁻ and a hexane solution of Bu^uLi were used.

6,10-Dimethyl-9-nitroundeca-5*E***,10-dien-2-one (4).** Sodium nitrite (2.5 g. 34.2 mmol) was added in portions over a

period of 1 h to a solution of geranylacetone (3) (1 g, 5.2 mmol) in 12 mL of AcOH and 2.5 mL of Et₂O stirred at 5 °C. The reaction mixture was kept for 1 h at 10 °C, diluted with 10 mL of H₂O, and extracted with Et₂O (3×20 mL). The extract was washed with H₂O (3×5 mL), dried with MgSO₄, and concentrated in vacuo. The residue (~1 g) was chromatographed on 30 g of SiO₂. Gradient elution (hexane \rightarrow hexane—AcOEt (75 : 15)) gave 0.82 g (66%) of a mixture of nitro derivatives 4 and 5 (~4 : 1) as a colorless oil, R_f 0.40 (hexane—AcOEt, 8 : 2). IR: 925, 1370, 1445, 1550, 1720, (2840—3000 (film). MS, m/z: 193 [M = 46]⁺, 175, 163, 159. Found (%): C, 65.49; H, 8.89. $C_{13}H_{21}NO_3$. Calculated (%): C, 65.25; H, 8.84.

HPLC separation of compounds **4** and **5** gave 0.66 g of nitro derivative **4**. 1 H NMR: 1.61 (br.s, 3 H, MeC(6)); 1.80 (br.s, 3 H, MeC(10)); 1.80-2.50 (m, 8 H, 4 CH₂); 2.13 (s, 3 H, C(1)H₃); 4.80 (m, 1 H, HCN); 5.04 (m, 1 H, HC(5)); 5.10-5.15 (m, 2 H, H₂C(11)). 13 C: 15.7 (MeC(10)), 18.2 (MeC(6)), 22.2 (C-3), 29.1 (C-8), 29.3 (C-1), 35.6 (C-4), 43.3 (C-7), 92.1 (C-9), 118.4 (C-11), 124.8 (C-5), 133.7 (C-6), 138.7 (C-10), 210.0 (C-2).

10,10-(Ethylenedithio)-2,6-dimethyl-3-nitroundeca-1,6Ediene (6). p-TsOH·H₂O (0.19 g, 1 mmol) and (CH₂SH)₂ (0.21 g, 2.27 mmol) were added to a solution of nitroalkene 4 (0.51 g, 2.1 mmol) in 5 mL of AcOH (cf. Ref. 16). The mixture was stirred at 25 °C for 4 h and treated with Et₂O and H₂O. The aqueous layer was separated and extracted with Et₂O. The extract was washed with water and a saturated aqueous solution of NaHCO3, dried with MgSO4, and concentrated in vacuo. The residue (~0.7 g) was chromatographed on 30 g of SiO₂. Gradient elution (hexane → hexane-EtOAc (90 : 10)) gave 0.6 g (91%) of dithiolane 6 as a colorless oil, $R_{\rm f}$ 0.55 (hexane - AcOEt, 8 : 2). IR: 790, 860, 920, 1075, 1280, 1375, 1445, 1550, 2800-3000 (film). ¹H NMR: 1.65 (br.s, 3 H, MeC(6)); 1.78 (s, 3 H, C(11)H₃); 1.83 (br.s, 3 H, MeC(2)); 1.90-2.40 (m, 8 H, 4 CH₂); 3.20-3.40 (m, 4 H, $(CH_2S)_2$; 4.85 (m, 1 H, HCN); 5.10+5.20 (m, 3 H, C(1)H₂ and HC(7)). 13C: 15.6 (McC(2)), 18.4 (McC(6)), 25.8 (C-8), 29.3 (C-4), 32.5 (C-11), 35.7 (C-9), 40.0 (<u>C</u>S), 45.5 (C-5), 66.6 (C-10), 92.6 (C-3), 118.4 (C-1), 125.7 (C-7), 133.1 (C-6), 138.9 (C-2). MS, m/z: 269 {M - 46}⁺. Found (%): C, 57.22; H, 8.14; S 20.43. $C_{15}H_{25}NO_2S_2$. Calculated (%): C, 57.10; H, 7.99; S, 20.33.

10,10-(Ethylenedithio)-2,6-dimethylundeca-1,6E-diene-3one (7). A solution of NH₄OAc (7.84 g, 103.6 mmol) in 22 mL of H₂O was added to 18 mL of an aqueous solution of TiCl₃* (containing 17.3 mmol of TiCl₃), thus bringing the pH to ~5.3. ButOK (484 mg, 4.3 mmol) was added to a solution of nitro compound 6 (1.36 g, 4.3 mmol) in 40 mL of McOH and the mixture was kept for 5 min. The resulting solution of nitronate was added dropwise over a period of 30 min to the solution of TiCl3 stirred at 15 °C. The mixture was stirred at 25 °C for 1 h and treated with 20 mL of a saturated aqueous solution of NaHCO3 and 50 mL of Et2O. The aqueous layer was extracted with Et₂O (2×50 mL). The ethereal extract was washed with H₂O and a saturated aqueous solution of NaHCO₃, dried with MgSO₄, and concentrated in vacuo. The residue (~0.9 g) was chromatographed on 30 g of SiO₂. Gradient elution (hexane → hexane—AcOEt (90 : 10)) gave 0.71 g (58%) of unsaturated ketone 7 as a colorless oil, $R_{\rm f}$ 0.56 (hexane—AcOEt, 8 : 2). IR: 940, 1097, 1190, 1230, 1390, 1450, 1550, 1685, 1710, 2830—3020 (solution in CHCl₃). ¹H NMR: 1.63 (br.s, 3 H, MeC(6)); 1.74 (s, 3 H, C(11)H₃); 1.87 (br.s, 3 H, MeC(2)); 1.80—2.00 (m, 2 H, C(9)H₂); 2.10—2.35 (m, 4 H, C(5)H₂ and C(8)H₂); 2.73 (m, 2 H, C(4)H₂); 3.20—3.40 (m, 4 H, (CH₂S)₂); 5.12 (m, 1 H, HC(7)); 5.74 and 5.93 (both m, 2 H, HC(1)). ¹³C NMR: 16.4 (MeC(2)), 18.1 (MeC(6)), 25.6 (C-8), 32.2 (C-11), 34.1 (C-4), 35.9 (C-9), 39.7 (CS), 45.4 (C-5), 66.5 (C-10), 123.7 (C-1), 124.9 (C-7), 134.4 (C-6), 144.3 (C-2), 201.6 (C-3). MS. m/z: 284 [M]⁺, 256, 223. Found (%): C, 63.67; H, 8.68. C₁₅H₂₄OS₂. Calculated (%): C, 63.33; H, 8.50.

10,10-(Ethylenedithio)-2,6-dimethylundec-6E-en-3-one (9). NaHCO₃ (2 g, 23.8 mmol) and 5 mL of H₂O were added at 25 °C (Ar) to a solution of unsaturated ketone 7 (0.31 g, 1.1 mmol) in 5 mL of PhH. The mixture was heated to 100 °C (bath), and $Na_2S_2O_4$ (1.7 g, 9.8 mmol) was added to it in portions with vigorous stirring over a period of 2 h. Then the reaction mixture was cooled and treated with Et2O and H₂O. The organic layer was separated, washed with a saturated aqueous solution of NaCl, dried with MgSO4, and concentrated in vacuo. The residue (-0.3 g) was chromatographed on 30 g of SiO₂. Gradient elution (hexane → hexane—AcOEt (90:10)) gave 308 mg (98%) of ketone 9 as a colorless oil, $R_{\rm f}$ 0.55 (hexane—AcOEt, 8 : 2). IR: 1070, 1385, 1450, 1710, 2830-3010 (in CHCl₃). ¹H NMR: 1.10 (d, 6 H, Me₂CH. J = 6.5 Hz); 1.64 (br.s, 3 H, MeC(6)); 1.77 (s, 3 H, C(11)H₃); 1.70–2.70 (m, 9 H, CH, 4 CH₂); 3.30–3.40 (m, 4 H, (CH₂S)₂); 5.15 (m, 1 H, HC(7)). 13 C NMR: 16.1 (MeC(6)), 18.2 (Me_2 CH), 23.2 (C-8), 26.0 (C-11), 32.3 (C-5), 33.4 (C-9), 38.7 (C-4), 39.9 $(\underline{C}S)$, 45.5 (C-2), 66.6 (C-10), 123.8 (C-7), 134.6 (C-6), 205.2 (C-3). MS, m/z: 286 [M]⁺, 225, 207, 201. Found (%): C, 62.38; H, 8.58; S 21.99. C₁₅H₂₆S₂O. Calculated (%): C, 62.88; H, 9.15; S 22.38.

10,10-(Ethylenedithio)-2,6-dimethyl-3-methyleneundec-6Eene (10). A 1.6 M solution of BuⁿLi (1.3 mL, 2.1 mmol) in hexane was added dropwise over a period of 5 min to a suspension of Me(Ph)₃P+Br⁻ (0.82 g, 2.3 mmol) in 6 mL of THF stirred at -30 °C (Ar). The resulting solution was stirred for 15 min at -10 °C; then a solution of ketone 9 (0.3 g, 1.05 mmol) in 2 mL of THF was added to it in one portion. The reaction mixture was refluxed for 4 h, cooled to 25 °C, treated with 2 mL of H₂O, and extracted with hexane. The extract was washed with brine, dried with MgSO4, and concentrated in vacuo. The residue (~0.3 g) was chromatographed on 30 g of SiO₂. Gradient elution (hexane → hexane—AcOEt (90:10)) gave 280 mg (93%) of dienc 10 as a colorless oil, $R_{\rm f}$ 0.66 (hexane—AcOEt, 8 : 2). IR: 900, 1390, 1460, 1640, 2830-3000 (in CHCl₃). ¹H NMR: 1.05 (d, 6 H, Me₂CH, J = 6.7 Hz; 1.67 (br.s, 3 H, MeC(6)); 1.78 (s, 3 H, C(11)H₃); 1.90-2.30 (m, 9 H, CH, 4 CH₂); 3.30-3.40 (m, 4 H, $(CH_2S)_2$; 4.65-4.70 (m, 2 H, $H_2C=$); 5.17 (m, 1 H, HC(7)). ¹³C NMR: 16.1 (MeC(6)), 21.9 (Me₂CH), 23.4 (C-8), 25.6 (C-4), 26.0 (C-11), 31.2 (C-2), 38.4 (C-5), 39.8 (CS), 45.7 (C-9), 66.7 (C-10), 106.4 ($H_2C=$), 124.1 (C-7), 135.8 (C-6), 155.9 (C-3). MS, m/z: 284 [M]⁺, 269, 256, 241. Found (%): C, 67.60; H, 9.65. $C_{16}H_{28}S_2$. Calculated (%): C, 67.54; H. 9.92.

6,10-Dimethyl-9-methyleneundec-5*E***-en-2-one (11).** A solution of dithiolane **10** (10.1 mg, 0.035 mmol) in 2 mL of MeCN was added in one portion to a solution containing AgNO₃ (29.9 mg, 0.176 mmol) and *N*-chlorosuccinimide (NCS) (20.8 mg, 0.156 mmol) in 4 mL of MeCN and 1 mL H₂O and stirred at 10 °C (cf. Ref. 17). The reaction mixture was stirred for 10 min and treated successively with saturated

^{*} The solution of TiCl₃ was prepared by gradual addition (Ar) of zine dust (12.8 g, 0.19 mol) over a period of 1.5 h to a solution of TiCl₄ (6.35 g, 33 mmol) in 90 mL of 10% HCl stirred at ~5 °C followed by keeping the resulting mixture for 12 h at 25 °C.

solutions (0.2 mL each) of Na₂SO₃ and Na₂CO₃ and with 0.2 mL of brine. The product was extracted with 10 mL of a hexane—CH₂Cl₂ (1:1) mixture. The organic layer was separated, dried with MgSO₄, and concentrated *in vacuo*. The residue (~10 mg) was chromatographed on 10 g of SiO₂. Gradient clution (hexane \rightarrow hexane—AcOEt (95:5)) gave 5.3 mg (72%) of diene 11 as a colorless oil, R_f 0.61 (hexane—AcOEt, 9:1). H NMR: 1.05 (d, 6 H, Me₂CH, J = 6.6 Hz); 1.63 (br.s, 3 H, MeC(6)); 2.13 (s, 3 H, HC(1)); 1.90—2.50 (m, 9 H, CH, CH₂); 4.67—4.75 (m, 2 H, H₂C=); 5.12 (m, 1 H, HC(5)).

This work was financially supported by the State Program for the Support of Leading Scientific Schools of the Russian Federation (Grant No. 96-15-97461).

References

- A. M. Moiseenkov and V. V. Veselovskii, *Izv. Akad. Nauk, Ser. Khim.*, 1995, 1423 [Russ. Chem. Bull., 1995, 44, 1367 (Engl. Transl.)].
- E. J. Corey, W. L. Scibel, and J. C. Kappos, *Tetrahedron Lett.*, 1987, 28, 4921.
- V. V. Veselovskii, A. V. Belyankin, B. I. Maksimov, Yu. A. Strelenko, and A. M. Moiseenkov, Izv. Akad. Nauk, Ser. Khim., 1992, 377 [Bull. Russ. Acad. Sci., Div. Chem. Sci., 1992, 41, 292 (Engl. Transl.)].

- A. M. Moiseenkov, A. V. Belyankin, A. V. Buevich, and V. V. Veselovskii, Izv. Akad. Nauk, Ser. Khim., 1994, 461 [Russ. Chem. Bull., 1994, 43, 420 (Engl. Transl.)].
- A. V. Stepanov and V. V. Veselovskii, Izv. Akad. Nauk, Ser. Khim., 1997, 1683 [Russ. Chem. Bull., 1997, 46, 1606 (Engl. Transl.)].
- A. V. Stepanov and V. V. Veselovskii, Izv. Akad. Nauk, Ser. Khim., 1998, 2357 [Russ. Chem. Bull., 1998, 47, 2286 (Engl. Transl.)].
- 7. B. Maurer and G. Ohloff, J. Chem. Soc., Chem. Commun., 1977, 353.
- R. Tamura, Y. Kai, M. Kakihana, K. Hayashi, M. Tsuji,
 T. Nakamura, and D. Oda, *J. Org. Chem.*, 1986, 51, 4370.
- N. Kornblum and P. A. Wade, J. Org. Chem., 1973, 38, 1418.
- 10. T.-L. Ho and C. M. Wong, Synthesis, 1974, 196.
- 11. G. A. Olah and B. G. B. Gupta, Synthesis, 1980, 44.
- F. Camps, J. Coll, and J. Guitart, *Tetrahedron*, 1986, 42, 4603.
- 13. R. Ballini and G. Bosioca, Synthesis, 1994, 742.
- F. G. Bordwell and E. W. Garbisch, Jr., J. Am. Chem. Soc., 1960, 82, 3588; G. Hesse and P. Werkhoff, Liebigs Ann. Chem., 1970, 740, 91.
- 15. N. Ono, I. Hamamoto, and A. Kaji, Synthesis, 1985, 950.
- M. P. Bosch, F. Camps, J. Coll. A. Guerrero, T. Tatsuoka, and J. Meinwald, J. Org. Chem., 1986, 51, 773.
- E. J. Corey and B. W. Erickson, J. Org. Chem., 1971, 36, 3553.

Received February 2, 1999